NASA Step-2 program

Sean C Casey VP Commercial Business Development

Melding Commercial and Governmental Assets

- Develop public/private partnerships for shared costs/risks
- Foster US market & optical communications expertise
- Enable:
 - Sustainability
 - Flexibility
 - Secure/open architecture
 - Interoperability
 - Demand/supply
- Transitions from PPP -> commercial space and navigation services

SCaN - Space Communications and Navigations

- Created in 2006 and now under NASA HEOMD
 - Near-Earth Network (NEN)
 - Space Network (SN)
 - Deep Space Network (DSN)

- Evolve services consistent with NASA mission requirements
 - Protect EM Spectrum, evolve standards, establish R&D program
- Single SCaN architecture:
 - Define evolving & minimal standards for missions

SCaN - Driving requirements

- Unified network for scientific and human space exploration
- Networked communications and navigation infrastructure
- Highest data rates for robotic and human exploration
- Interoperable international protocols
- Infrastructure for lunar and mars surface
- Enable human activities on lunar and mars surface
- Meet commitments for existing and planned missions

Inclusion of optical and enhance RF capabilities

SCan - R&D Successes (GSFC/JPL/MIT)

2019 Laser Communications Relay Demonstration (LCRD) 1.244 Gbps

NASA NextStep-2 Study Topics

- Evaluation of NASA roadmap
 - Gap analysis of government & commercial
- Accommodating LCRD payload & terminals
 - Hardware & software issue
- Optical and RF services
 - Government requirements vs. commercial capabilities
- Interoperability & internetworking among providers
 - Plays well together
- Business partnership and markets
 - Works well together
- Service Concept of operations
 - Industry transition plans & timelines
- Secure data processing
 - Cyber-security

HALO (High Articulation Laser Optics) Constellation

HALO - Specifications

- All Optical constellation

 Baker's dozen
- Bi-directional links
- Inter-satellite ~ 33 Tbps
- Customer ~ 200 Gbps
- Wavelength (196.5 THz):
 - 1.525 1.565 um
- Partners:
 - ATLAS
 - Ball/L3

Xen-hub transceiver

JPL Technology licensed to Xenesis:

- 5 cm telescope
- 2-axis gimbal
- Thermal control/power conditioning
- Four 2.5-Gbs channels
- Forward error correction
- C-band (1530 1560 nm)

ATLAS Global Antenna Network

Operational & Landbanked Sites 2019/2020 Freq: UHF, S-, X-, and Ku/Ka-band

The ATLAS Solution

ATLAS Eliminates the Data Bottleneck

- ATLAS antenna technology provides for multiple satellites to simultaneously connect.
- ATLAS software-centric cloud based network is fully automated.

Sean C. Casey, PhD, MBA VP Comm BusDev ATLAS Space Operations scasey@atlasground.com 877-392-8527 ext 204